

Rock and Rock Mass Deformability (Compressibility, Stiffness...)

Maurice Dusseault

Common Symbols in RM

- E, ν: Young's modulus, Poisson's ratio
- **\$**: Porosity (e.g. 0.25, or 25%)
- c', ϕ', T_o : Cohesion, friction \angle , tensile strength
- T, p, p_o: Temperature, pressure, initial pres.
- σ_v, σ_h : Vertical and horizontal stress
- σ_{hmin} , σ_{HMAX} : Smallest, largest horizontal σ
- $\sigma_1, \sigma_2, \sigma_3$: Major, intermediate, minor stress
- ρ, γ: Density, unit weight (γ = ρ × g)
 K, C: Bulk modulus, compressibility

These are the most common symbols we use

Stress and Pressure

- Petroleum geomechanics deals with stress & pressure
 Effective stress: "solid stress"
- Pressure is in the fluid phase
- To assess the effects of $\Delta \sigma'$, Δp , ΔT , ΔC ...
- Rock properties are needed
 - Deformation properties...
 - → Fluid transport properties...
 - → Thermal properties...

Rock Stiffness, Deformation

- To solve a σ' - ϵ problem, we must know how the rock deforms (strain ϵ) in response to $\Delta \sigma'$
- This is often referred to as the "<u>stiffness</u>" (or compliance, or elasticity, or compressibility...)
- For "<u>linear elastic</u>" rock, only two parameters are needed: Young's modulus, E, and Poisson's ratio, v (see example, next slide)
- For more complicated cases plasticity, dilation, anisotropic rock, salt, etc. - more and different parameters are needed

The Linear Elastic Model

- The stiffness is assumed to be constant (E)
- When loads are removed, deformation are reversed
- Suitable for metals, low \$\phi\$ rocks such as...
 - → Anhydrite, carbonates, granite, cemented sands...
 - For many petroleum
 geomechanics problems,
 linear elastic assumptions are sufficient

1D and 3D Compressibility?

- Change in volume with a change in stress
- In 1-D compressibility, lateral strain, $\varepsilon_{\rm h}$, = 0
 - Often used for flat-strata compaction analysis
- 3-D compressibility involves all-around Δσ'
 C_{3D} = 1/K, where K is
 - $C_{3D} = 1/R$, where R is the bulk modulus of elasticity

Some Guidelines for Testing...

- Use high quality core, as "undisturbed" as possible, under the circumstances...
 - Avoid freezing, other severe treatments
 - Preserve RM specimens on the rig floor if you can
- Use as large a specimen as possible
 - → A large specimen is more representative
 - Avoid "plugging" if possible (more disturbance)
- If undisturbed core is unavailable
 - → Analogues may be used
 - → Data banks can be queried
 - Disturbed samples may be tested with "judgment"

More Guidelines for Testing...

- Replicating *in situ* conditions of T, p, [σ] is
 "best practice" (but not always necessary)
- Following the stress path that the rock experiences during exploitation is "best practice"
- Test "representative" specimens of the GMU
- Testing jointed rock masses in the laboratory is not feasible; only the "matrix" of the blocks...
- It is best to combine laboratory test data with log data, seismic data, geological models, and update the data base as new data arrive...

Laboratory Stiffness of Rocks

1-D Measuring Rock Properties

- From cores, other samples: however, these may be microfissured (E_{field} may be underestimated)
- In microfissured or porous rock, crack closure, slip, contact deformation may dominate stiffness
- E_s and v_s (static) under σ'_3 gives best values
- If joints are common *in situ*, they may dominate rock response, but are hard to test in the lab

$$\int 10 \text{ m}$$
 in situ
$$\int \Delta T, \Delta \sigma$$
 in the lab -0.10 m

Typical Test Configuration...

- An "undamaged", homogeneous rock interval is selected
- A cylinder is prepared with flat parallel ends
- The cylinder is jacketed
- Confining stress & pore pressure are applied
- The axial stress is increased gradually
- ε_{a} , ε_{r} (ε_{r}) measured

1-D Measuring Rock Properties

Jacketed Cylindrical Rock Specimen

- Strain gauges measure strains (or other special devices can be used)
- Pore pressure can be controlled, and...
- ΔV_{pore} can be measured at constant backpressure
- Similar set-up for high-T tests and creep tests
- Acoustic wave end caps

• Etc...

A Simpler Standard Triaxial Cell

- Developed by Evert Hoek & John Franklin
- Is a good basic cell for rock testing
- Standard test methods
 are published by the
 International Society
 for Rock Mechanics
 (ISRM)

In the Laboratory...

- Axial deformation is measured directly by the movement of the test platens
- Bonded strain gauges on the specimen sides are also used
 - \rightarrow Gives axial strain (calculate E)
 - \rightarrow Also gives the lateral strain (calculate v)
- Special methods for porous rocks or shales because strain gauges don't work well
- High T tests, acoustic velocity measurements during tests, etc., etc.

Reminder: Scale and Heterogenity

Reminder: Anisotropy

- Different directional stiffness is common!
 - Bedding planes

- Oriented minerals (clays usually)
- Oriented microcracks, joints, fissures...
- Close alternation of thin beds of different inherent stiffness (laminated or schistose)

stiffer

less stift

- Imbricated grains
- Different stresses = anisotropic response
- → Anisotropic grain contact fabric, etc.

Orthotropic Stiffness Model

- In some cases, it is best to use an orthotropic stiffness model - shale
- Vertical stiffness and Poisson's ratio are different than the horizontal ones
- Properties in the horizontal plane the same
- This is as complex as we want: E₁, E₂, v

Lab Data, Then What?

- Clearly, laboratory tests are valuable, but insufficient for design and optimization...
- We also use correlations from geophysical logs
 - Obtain relevant, high-quality log data
 - → Calibrate using lab test data
 - Juse logs and 3-D seismic to extrapolate and interpolate (generating a 3-D whole earth model)

Rock Mass Stiffness Determination

- Use correlations based on geology, density, porosity, lithology...
- Use seismic velocities (v_P, v_S) for an upperbound limit (invariably an overestimate)
- Measurements on specimens in the lab? (problems of scale and joints)
- In situ measurements
- Back-analysis using monitoring data such as compaction measurements...
- Reservoir response to earth tides...

In Situ Stiffness Measurements

- Pressurization of a packer-isolated zone, with measurement of radial deformation $(\Delta r / \Delta \sigma')$, in an "impermeable material" so that $\Delta \sigma' = \Delta p_w$
- Direct borehole jack methods (mining only)
- Geotechnical pressure-meter modified for high pressures (membrane inflated at high pressure, radial deformation measured)
- Hydrofracture flexing (THETM tool, rarely used and quite expensive)
- Correlations (penetration, indentation, others?)

Seismic Wave Stiffness (E_D , v_D)

- v_P, v_S: dynamic responses are affected by stress, density and elastic properties (σ, ρ, Ε, ν)
- Seismic strains are tiny (<10⁻⁸-10⁻⁷), they do not compress microcracks, pores, or contacts
- Thus, E_D is <u>always higher</u> than the static test moduli, E_S
- The more microfissures, pores, point contacts, the more $E_D > E_S$, x 1.3 to x 10 (for UCSS)

1-D Measuring Rock Properties

- If porosity ~ 0, σ ' very high, E_s approaches E_D
- Seismic moduli should be calibrated by testing

Seismic (Dynamic) Parameters

Δt is transit time, plotted in microseconds per foot or per metre

 V_p and V_s are calculated from the transit time and the distance – L between the receiver and the transmitter in the acoustic sonde $V_p = L/\Delta t_p$

1-D Measuring Rock Properties

Amplitude

Deformation Properties from Logs

- Simple P-wave transit time correlations
- Dipole sonic data V_p and
 - JSE WITH → Often dipole sonic dat ble \rightarrow Estimate V_s from atios, lithology...
- Basic data ne stimation:
 - → Sonic l ipole → Density na-gamma)
 - \rightarrow Water saturation log (for corrections)
 - Mineralogy/lithology logs (for corrections)
- Service companies provide these methods

Back-Analysis for Stiffness

- Apply a known effective stress change, measure deformations (eg: uplift, compaction)
- Use a mathematical model to back-calculate the rock properties (best-fit approach)
- Includes all large-scale effects
- Can be confounded by heterogeneity, anisotropy, poor choice of GMU, ...
- Often used as a check of assumptions
- One must commit to some monitoring (e.g. {Δz}) in order to achieve such results

Discontinuities & E

- Grain contact deformability is responsible for sandstone stiffness
- These may be cemented or not, and in low-\$\phi\$ media, they become interlocked, rocks are stiffer

Grain Contact Stiffness

- A grain contact solution was developed 120 years ago by Hertz
 - → $\Delta d \propto 1/E, (\Delta F)^{\frac{2}{3}}$
- It shows that grain-tograin contacts become stiffer with higher load
- High \u03c6 rocks dominated
 by such contacts
- They are stiffer with stress: $C = f(\sigma')$

Non-Linear Elastic Behavior

- The stiffness is assumed to be variable – $E(\sigma'_3)$
- Deformation is still reversible
- Suitable for highly microfissured materials, high \u03c6 granular rocks
- For some geomechanics problems, a non-linear elastic solution is useful
 - Sand compaction, sand production...

Geological Factors and Stiffness

- Geological history can help us infer the stiffness and the response to loading...
- Intense diagenesis
 - Reduces porosity
 - Cementation
- Deeper burial then erosion (precompaction)
- Age (in general correlated to stiffness)
- Porosity (lower \u00f6, higher E)
- Mineralogy (SiO₂ vs. litharenite mineralogy)
- Tectonic loading (reduces \$\u03c6...)

Sandstone Diagenesis

- Dense grain packing -
- Many long contacts-
- SiO₂ precipitated in interstitial regions
 - Only 1% solution at contacts = 8% loss in volume
 - -A stable interpenetrative fabric, high stiffness

Fine-grained unconsolidated sandstone

Effect of Diagenetic Densification

"Precompaction" Effect

 A threshold value is necessary before any nonelastic compression is triggered This may arise from three processes True precompaction by burial then erosion → Cementation of grains = stiffer + stronger → Prolonged diagenesis increases stifeness Little deformation is seen in early drawdown, but occurs later This can confuse field planning

Issues to Remember...

- Stiffness (elastic modulus) is a fundamentally important rock property for analysis
- We can measure it with cored rock specimens
- Also, in boreholes (much more rarely)
- Sometimes, through correlations to other measures such as geophysical data
- Sometimes, through back-calculation, using deformation measurements
- Nevertheless, there is always uncertainty
- And, natural lithological heterogeneity