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Author's Note:

The lecture slides provided here are taken from the course
“Geotechnical Engineering Practice”, which is part of the 4th year
Geological Engineering program at the University of British Columbia
(Vancouver, Canada). The course covers rock engineering and
geotechnical design methodologies, building on those already taken
by the students covering Introductory Rock Mechanics and Advanced
Rock Mechanics.

Although the slides have been modified in part to add context, they
of course are missing the detailed narrative that accompanies any
lecture. It is also recognized that these lectures summarize,
reproduce and build on the work of others for which gratitude is
extended. Where possible, efforts have been made to acknowledge
the various sources, with a list of references being provided at the
end of each lecture.

Errors, omissions, comments, etc., can be forwarded to the
author at: erik@eos.ubc.ca
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Stress :Qontmlled Insmblhty

Struc‘rurally controlled msfabulrhes are gener‘ally dr'lven by a

a tensor with six mdependem‘ components Hence the

manifestations of stress-controlled instability are more variable

and complex than those of srruc'rurally-con‘rrolled fculures
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Massive
(RMR >175)

Moderately Fractured
(50> RMR < 75)

Highly Fractured
(RMR < 50)

Low In-Situ Stress
(0)/0.<0.15)

(]

Linear elastic response.

Falling or sliding of blocks
and wedges.

Unravelling of blocks from
the excavation surface.

Oiar/Oc < 0.4+0.1

Low Mining-Induced Stress

Intermediate In-Situ Stress
(0.15>0,/0,.<0.4)

o f

o

Brittle failure adjacent to
excavation boundary.

Localized brittle failure of intact
rock and movement of blocks.

Localized brittle failure of
intact rock and unravelling
along discontinuities.

Intermediate Induced Stress
0.4+0.1 < Opgr/Oe < 1.1520.1

High In-Situ Stress
(o) /0,.>04)

Failure Zone %:gp

¥

Brittle failure around the
excavation .

Brittle failure of intact rock
around the excavation and
mavement of blocks.

Squeezing and swelling
rocks. Elastic/plastic
continuum.

Omax/Oc > 1.1520.1

High Mining-Induced Stress

Geggjogl




Stress-Controlled Instability Mechanisms

Although the fundamental complexity of the nature of stress has to be
fully considered in the design of an underground excavation, the problem
can be initially simplified through the assumptions of continuous,
homogeneous, isotropic, linear elastic behaviour (CHILE).

CHILE: Continuous, Homogeneous, Isotropic, Linear Elastic

DIANE: Discontinuous, Inhomogeneous, Anisotropic, Non-Elastic

The engineering question is whether a solution based on the CHILE
assumption are of any assistance in design. In fact though, many CHILE-
based solutions have been used successfully, especially in those
excavations at depth where high stresses have closed the fractures and
the rock mass is relatively homogeneous and isotropic. However, in near-
surface excavations, where the rock stresses are lower, the fractures
more frequent, and the rock mass more disturbed and weathered, there is
more concern about the validity of the CHILE model.
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Stress-Controlled Instability Mechanisms

A stress analysis begins with a knowledge of the magnitudes and directions
of the /n situ stresses in the region of the excavation. This allows for the
calculation of the excavation disturbed or induced stresses.

{
Pax Py
4— — g

g There exists several close form solutions for the induced stresses
around circular and elliptical openings (and complex variable
techniques extend these to many smooth, symmetrical geometries),
and with numerical analysis techniques the values of the induced
stresses can be determined accurately for any three-dimensional
excavation geometry.

Brady & Brown (2006)
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Stresses & Displacements - Circular Excavations

The Kirsch equations are a set of closed-form solutions, derived
from the theory of elasticity, used to calculate the stresses and
displacements around a circular excavation.

p [ a’ a*  3a*
G = 5 _(1 + K) (1 — r—z) —(1 —K)(I _4r_2 + 7)(:0520}
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ogy = = | (1 + K)(1+ —,) + (1 — K) (1 + —4) 00528}
l 2L r= r
— - 2 2 3 4
- O = g (1K) (1+ri2——:§1-) sin28}
k ° P 2 2
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T Brady & Brown (2006)
Stress ratio:
k = 0,/c,
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Stresses & Displacements - Circular Excavations

From these equations we can see that the stresses on the
boundary (i.e. when r = a) are given by:

oge = PL(1+k) + 2(1-k)cos26]
Gf‘l" = O

T =0

Note that the radial stresses are zero
because there is no internal pressure,
and the shear stresses must be zero at
a traction-free boundary.
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Exqm;ple 1: .S Wtcesésesw ar'our;d q Cmculhc

Q. At a dep‘rh of 750 m, a 10-m dlame'rer' cur'cular'
tunnel is driven in rock having a unit weight of

26 kN/m3 and uniaxial compressive and tensile

strengths of 80.0 MPa and 3.0 MPaq,

respectively.Will the strength of the rock on

the tunnel boundar'y be exceeded if:

(a) k=0.3, and

(b) k= 2.0?

T
| : : arricon. X - Hiideo f?ﬂgo
| 1arcison-a-rudason (cu

A. Since the tunnel has neither a support pressure nor an internal

pressire; applied to it, the local stresses at the boundary have
o3 = 6, = 0 and o, = o,. The Kirsch solution for the o

circumferential sfr'ess |s

b i i b i i b i 2§ b i i b - i 4§ b . i i
a a
09:%01, [(I-Hc) (1—|—r—2)+(1—k) (1—%—3;—5) 00529] -
i : : i : : i : : : i : : i : : 7

Fora Totation on e FurnelBoundar |
(. a=r), this simplifies to: | == 09 =0, [(1+K)+2(1 — &) cos26]
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Stress

and Failure Criterion
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Brady & Brown (2006)
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The key is that the failure criterion is
compared to the stresses and is not part
of the calculation!!
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Potential Ground Control Issues:
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Stresses Away from Opening

\/ Ur.—.;—pz{(l+k)(1—g)u(l-k)(1—4“—;.+3f—:)cosze}
0y =3P, {(1 + k)(l T “—;)+ a 4:)(1 +3 f—:)cos 26]
e 'r[B:é—pZ[(l—k)(l+2§—3%‘)sin29}
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Brady & Brown (2006)
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Zone of Influence

failure. 0 T S

B R R S IV SNPS p

The concept of influence is important in excavation design, since
the presence of a neighbouring opening may provide a sugmflcan‘r
disturbance to the near-field stresses to the point of causing

. (a) axisymmeftric stress

d/sfr/buf/an around a circular

opening in a hydr'osfaf/c stress

field,; (b) circular openings in a

hydrostatic stress field,
effectively isolated by virtue of ..

their exclusion from each

other’s zone of influence.

(b)
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limit of zone of
influence of

excavation |

\
limit of zone of —— /

influence of

Ay

Brady & Brown (2006)

excavation 11

. illustration of the effect of contiguous openings of different
dimensions. The zone of influence of excavation I includes excavation
IT, but the converse does not apply.

(1l
N7

—).

RM E

itio

<— 15 of 37 Erik Eberhardt - UBC Geological Engineering IS




Stresses Around Elliptical Openings

The stresses around elliptical openings can be
treated in an analogous way to that just
presented for circular openings. There is much
greater utility associated with the solution for
elliptical openings than circular openings,
because these can provide a first
approximation to a wide range of engineering
geometries, especially openings with high
width/height ratios (e.g. mine stopes, power
house caverns, etfc.).

From a design point of view, the effects of
changing either the orientation within the
stress field or the aspect ratio of such
elliptical openings can be studied to optimize
stability-
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Stresses Around Elliptical Openings

Assuming isotropic rock conditions, an elliptical opening is completely
characterized by two parameters: aspect ratio (major tfo minor
axis) which is the eccentricity of the ellipse: and orientation with
respect to the principle stresses. The position on the boundary,
with reference to the x-axis, is given by the angle y.

o= 5= {1+ (1 +4) + (1 - g cos 2 (x|
~(1 - B[(1 + g)* cos2x + (1 - ¢?) cosZB]]

W
where g = —
H

Hudson & Harrison (1997)
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Stresses Around Elliptical Openings

It is instructive to consider the maximum and minimum values of
the stress concentrations around the ellipse for the geometry of
an ellipse aligned with the principal stresses. It can be easily
established that the extremes of stress concentration occur at the
ends of the major and minor axes.

W

=p(l —k+2g) = (1-k+ /__),

oa =p( q)=p o
Zk) ( ZH)
—plb—1+-2)=plh—1+k [ 2L
9B p( g )~ F PB

where, for an ellipse, the radii of curvature are

Hudson & Harrison (1997)
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Example 2: Stresses around an Elliptical Opening

Q. A gold-bearing quartz vein, 2 m thick and dipping 90°, is to be
exploited by a small cut-and-fill stoping operation. The mining is to
take place at a depth of 800 m, and the average unit weight of the
granite host rock above this level is 29 kN/m3. The strike of the
vein is parallel to the intermediate stress, and the major principal
stress is horizontal with a magnitude of 37.0 MPa. The uniaxial
compressive strength of the vein material is 218 MPa, and the tensile
strength of the host rock is -5 MPa. What is the maximum
permissible stope height before failure occurs.

A. We can assume that, in 2-D cross-section, the stresses induced in
the sidewalls (tensile) and the crown (compressive) of the stope can
be approximated using the equations for an elliptical excavation.

| r o [
0'51dewallzl‘_k+2(g) Ocrown k14K - —k—1+2k ]2
Overtical h Oyertical Lcrown w

Harrison & Hudson (2000)
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Example 2: Stresses around an Elliptical Opening
| , IR | e 5
———— (@ Rearranging the given equations, we can solve for A 2
. . o« o unedi N
the height of the excavation as the minimum of: — wtet— / =
, A 8
...
2w ; w Ocrown ? mined and T
h = Osidewall | , . or .. h= 452 +1-k it
ST 4+ k=1 Overtical gty i S
Overtical acmt\::li ‘é
i f drives E
uuuuuu (2 The maximum stress that can be sustained by the crown and the
sidewall are 218 and -5 MPa, respectively. Note that the sidewall
stress is negative because this represents the tensile strength. = |
““““““ ©) The veﬁ“.“aa“i“"‘g%ess 5t Overtical = ¥ 2 = 0.029 x 800 = 23.2 MPa
HERREEN I~ 37.0
and hence ;'rhe ratio of horlzontal 'ro verhcal str'ess is: k= 2373 —1.59
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rock in the sidewall is not exceeded is given by:

|
| : ¢ v H i v H i v H ¢ v : ¢ v
2w 2x2 70N
31dewall -5
=1 =3 1504 -
Overtical 2372 - ; iy &)
i 8 “““““
Made.s A =
/ ofsfapej §
Thus we see that sidewall ol E
failureis Wﬁ‘rﬁ‘f‘_g—d‘f"o_r ing condition oid N
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acceptable in ‘rhe stope deann S
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Stress Analysis - Numerical Modelling

Many underground
excavations are
irregular in shape
and are frequently
grouped close to
other excavations.
These problems
require the use of
numerical techniques.

Sili Piliar

!

direction of
mining zdvancemeni

Legend <0 0 IS5 30 45 60 75 90 >90

cies) I 1T 1]

Eberhardt et al. (1997)
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Numerical Modelling

methods of stress and deformation analysis fall into two

YYYYYYYY Numerical

- > - - > - & > - - - - -

e incl. boundary-element method
Integral " . only problem boundary is defined & -

VVVVVVV Methods . discretized

()
()

N Pro: more computa'rionailly §efi“%icién‘r vvvvv : o]
Con: restricted to elastic analyses .| 1 |

- - - - - - - - . - - . -

incl. finite-element/-difference &

e 4 ’ : NN -:“P' Y "{‘ ]|
distinct-element methods %%*@é@ﬁéﬁ%%ﬁ%ﬁ%@%: ﬁﬁﬁﬁﬁﬁﬁﬁ
e <7 AL U e
Differential problem domain is defined & . féi?“%'&“‘%"iféi‘%m%ﬁ% vvvvvvvv
o < . . S D . T A AWy
Methods N discretized T T T e v .

™ Pro: non-linear & heterogeneous — —RAIPEOSEAPOCET
material properties accommodated !

Con: longer solution run times

H

— < 240f 37 Erik Eberhardt - UBC Geological Engineering ISRM Editio




Boundary-Element & Stress Analyses

The Boundary Element Method
(BEM) is generally favoured for
stress analyses involving
multiple excavations with
complex 3-D geometries (e.g.
those frequently encountered in
underground mine design). The
irregular shape of the
orebodies and staged nature of
mining, makes the ease of
mesh generation and
computational efficiency
afforded by the BEM highly
advantageous.

Commercial Software:

Legend <0

cvee O ) O

15 30 45 60 75 90 =90

Complex 3-D geometries: It's

easier to generate a mesh over a

surface than through a volume

Eberhardt et al/. (1997)

Examine3D (Rocscience) - http://www.rocscience.com/

Map3D (Mine Modelling Pty Ltd.) - http://www.map3d.com/
BEFE (Computer Software & Services - CSS) - http://members.chello.at/sylvia.beer/
GPBEST (Best Corp.) - http://www.gpbest.com/
BEASY (Beasy Group) - http://www.beasy.com/
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In performmg an analysis, the boundary of the

excavation is divided into elements and the

interior of the rock mass is represented

mathematically as an infinite continuum. The

solution works to find a set of approximate

stresses which satisfy prescribed boundary

stresses and displacements in the rock mass.

conditions, and then uses these to calculate the

What to Know:

- Computational method of solving linear partial differential equations which have

een formulated as integral equations (i.e. in boundary integral form).
Key advantage is the reduction of the model dimension by one, providing simpler
mesh generation & input data preparation, and greater compufational efficiency.
Key disadvantage is the required assumption of homogeneous linear elastic material
behaviour; plasticity and heterogeneity negate the method's intrinsic SlmpJIC/lﬂ'y.

» Common applications include stress analysis of underground excavations, soil=~
structure interactions, brittle fracturing processes, dynamic problems,
groundwater flow-and coupled-H-M-& T-H-M-problems:
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Case History: Trout Lake Mine, Flin Flon

-

Tonnes Au (g/t) Ag(g/t) Cu (%) Zn (%) -

Trout Lake
Proven 1,433,000 1.0 111 14 4.7
Probable 1,058,000 1.7 205 2.5 40
Trout Ore Production
i The Trout Lake Cu-Zn sulphide deposit was

1000.0

900.0 discovered in 1976, with mining beginning in

. /'/\—\/\ 1982. The deposit is a VMS-type deposit

600.0 that involves two ore zones 500 m apart,
which reach depths exceeding 1200 m.

000 Tonnes

500.0

95 96 97 98 99 00 01 02 03 04 05
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Flin Flon Mining Belt
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Case History: Trout Lake Mine, Flin Flon
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Eberhardt et al. (1997)
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Trout Lake Mine, Flin Flon

Case History:
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Case History: Trout Lake Mine, Flin Flon
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Case Histor _Mine Stress is
| Reschke & Romanowski (1993)
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Case History:

Trout Lake Mine Stress Analysis

Legend <0 15 30 45 60 75 90 =90
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Because of the efficiency of the
boundary element technique, 3-D analyses
(e.g. those looking at the stress
interactions between neighbouring stopes)
becomes a relatively straightforward
exercise.

Eberhardt et al. (1997)

Computed stresses can then be compared
against estimated rock mass strengths to
assess pillar stability.
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